

Technology Trends
Low Code Application Development

Low Code Application Development

Table of Contents

Business Brief ... 3

Technical Brief .. 4

Industry Use ... 6

Government Use ... 8

2

Low Code Application Development

3

Business Brief
A Low-Code Development Platform (or simply low-code1) is a software development

environment and platform that enables modern programmers to develop application

software (apps) through graphical user interfaces instead of writing code in a traditional

programming language. While originally intended for applications involving databases,

business processes, content/document management systems, and web interfaces, low-

code is now mature enough to develop almost all types of applications except for those

deeply embedded, or very high-performance (such as games or scientific computing).

Low-code has its technical roots in rapid application development (RAD) and fourth

generation programming languages from roughly 1992 to the early 2000’s.

Low-code is built on the concept of higher abstraction levels, where the developer can

directly express business processes and requirements without getting mired in coding

details. For some apps developed in low-code, a small amount of simple code is typically

still written by hand – especially for applications not following one of the vast number of

built-in templates. (Those requiring absolutely no handwritten code are referred to as no-

code apps.) This reduction in manual coding has some important effects:

App development (including feature capture, testing/validation and

deployment) proceeds much faster than usual – enabling agile
development, and reducing cost and improving time-to-market. As a side

effect, this also reduces the number of errors and requirements mismatches.
Less coding (and less intricate coding) allows a broader range of people to
engage in app development – no longer limiting this to highly skilled

programmers (who are typically rare, talented, and expensive).
Low-code originally catered to apps-from-scratch, but is now also able to

integrate legacy or third party systems (e.g. ERPs and databases such as SAP,
Oracle, DB2, SQL Server, etc.) to build complete apps even more quickly.

Low-code is not without its challenges:

Finding developers: despite the low technical barrier to usage, most low-
code systems are proprietary and require at least a modest amount of
system-specific training.

Highly skilled traditional developers often view low-code with skepticism and
defensiveness – partly due to the slow devaluation of the traditional skill set.

Licensing costs are often opaque and somewhat higher than those of
traditional development environments and tools (many of which are open-

source).

1 Some industry analysts and vendors of low-code systems use very different terminology,
for example: Gartner uses high-productivity application Platform-as-a-Service (hpaPaaS).

Low Code Application Development

4

According to the March 2019 Forrester Wave report, the current leading low-code

systems (out of a total of 13 evaluated in this latest report) are Microsoft PowerApps,

OutSystems, and Mendix (now acquired by Siemens), with Kony and Salesforce

following closely. Similar vendor rankings are also given by Gartner, Ovum, and IDC.

Technical Brief
Briefly, low-code is a development environment and runtime platform that allows for

building apps of almost any kind (with the exception of deeply embedded or very high-

performance apps) while only writing a very small amount of simple code. In many

cases, absolutely no code is written – making them “no code apps.”

To the low code developer (often someone more specialized in the application

domain than in coding), the low-code tool appears like most integrated development

environments (IDEs). Instead of a window in which to type code, the functionality of the

application is built visually. That likely starts with drawing the windows of the application,

and attaching actions (again, visually) to the various GUI elements such as buttons,

drop-down menus, list boxes, etc. In general, many apps support a business process,

which is then drawn diagrammatically in low-code. Each step in the business process

may activate other windows or take some further action.

Such actions can involve communicating with other applications (such as email), pulling in

documents, consulting a database, or taking remote action. Creating an interaction with

another application is usually a simple visual connection diagrammatically, and most low-

code systems support APIs (which remain only visual in low-code) to a vast number of other

vendors’ applications. Similarly, pulling in documents/files is done visually, along with any

processing of such files – including sharing them remotely.

One of the most significant wins in low-code is database integration: the developer

drags and drops a database, which is usually then autodiscovered by the low-code

environment, making the structure of the database visually obvious. The developer may

then visually create database queries (in a form of visual SQL), and use those results for

further processing or display in a window. Naturally, various operations across

databases are also supported. The leading vendors of low-code support all of the

major databases across many versions. In a limited number of cases, a very complex

database query must be written by hand in SQL – though that process is coached by

intelligent assistants within the tool, and is done visually.

Most real-life app development involves interfacing to legacy systems – something also

well enabled in low-code. Such legacy systems (e.g. SAP, some other ERP, or database)

appear as connectors in a palette of supported systems, which can then be used

visually, while the low-code system manages the actual API usage.

Low Code Application Development

5

All of the low-code systems have extensive palettes of additional components – in

many cases written by the low-code vendor in other languages for performance

reasons. Some of the pre-built components include:

Location services using GPS on mobile devices.
Cloud support for all of the major vendors, as well as private clouds.
Cameras, including gesture and facial recognition, etc.

Audio support, including sound generation and voice recognition/synthesis.
Multilanguage support.

Internet-of-Things (IoT) interfaces and complex event processing.
Log file and audit trail support in applications requiring governance.

Security primitives, such as encryption, signatures, and authentication.
Machine learning and artificial intelligence engines.
Visualizations for large-scale data.

Back-end interfaces to big-data systems such as Hadoop.

Low-code tools additionally have user communities contributing new components or

wrappers for legacy systems, and proficient programmers (in other languages such as

Java, C++, C#, etc.) can easily produce their own components as needed. The leading

low-code vendors have extensive support for mobile and desktop apps, including

keyboards, styluses, and touch-screens. Much of that support is encapsulated in a single

project, meaning that a mobile version of an app can be co-developed with the

desktop version.

Low-code environments directly support version control through a variety of interfaces

such as to Git, Mercurial, Subversion, etc. This allows not only for the safety of being able

to roll back changes, but also for multi-developer projects.

Following the assembly of the app, the low-code environment allows for immediately

testing/debugging it without a long compile-build cycle. This directly supports agile

development and co-refinement of requirements where domain experts/users can

make adjustments to the app as early as possible. Such testing can be done in a

staged testing platform with test databases, etc.

Finally, deployment is usually a single-step process in its lifecycle manager, where the

low-code environment is aware of the deployment platform’s parameters and the app

can be pushed directly into production and use. Should anything go wrong, rolling

back to a previous version is usually equally easy.

Under the hood, low-code is of course also making use of traditional programming

languages and tools – though this is not usually visible to the developer. The visual

programming is translated directly into C#, Java or similar (some platforms such as

OutSystems support both), which is then compiled using the normal development tool-

chain. The low-code environment tracks the minimal amount of code generation and

recompiles, allowing for a very interactive development experience oriented towards

experimentation and prototyping. The output C# or Java can also be used standalone

Low Code Application Development

6

in case of a move away from low-code, though the actual code is often not elegant

enough for true understandability.

Industry Use
All of the major technical industry analysts (Forrester, Gartner, Ovum, and IDC) have

reported on low-code for a number of years – following Forrester naming it “low-code”

in 2014. Those reports have at times identified up to fifty providers of low-code

environments over the past decade. Some of those providers have faded, while three

have emerged as the leading providers of very broad low-code solutions2: Mendix (now

a part of Siemens), Microsoft (with PowerApps), and OutSystems. The Forrester Wave

from March 2019 is shown in Figure 1, while the 2018 Gartner Magic Quadrant is shown

in Figure 2.

Figure 1 The Forrester Wave: Low-Code Development Platforms for AD&D Professionals, Q1 2019. Used

without permission.

2 A broad solution is one able to interface to many other types of components (both legacy or
written in other programming languages), runs on several platforms, is able to produce apps of
all types.

Low Code Application Development

7

Among other requirements, the systems featured in the Forrester Wave were chosen

because they each:

1. Offer a comprehensive declarative development approach: the level of
abstraction matches that of the client, which is critical for expressing the
requirements.

2. Provide a low-cost-of-entry commercial model: they allow for free trials, and
provide online training material.

3. Support building many business use cases, from web and mobile apps to
database, event processing, IoT, and business process apps.

4. Primarily target large enterprises: revenue over a billion USD and geographically
dispersed teams.

Websites of the low-code tool leaders typically provide reference customers, and these

include numerous prominent banks, insurance companies, airlines, government

departments, and the US Army – though in most cases no details are given about the

precise application domain. Most of the analysts’ reports, as well as self-reporting by

OutSystems and Mendix, indicate that 88% of companies are adopting low-code, while

74% of those companies are integrating the business side into low-code development,

thereby directly involving the clients who dictate the requirements3.

Low Code Application Development

8

Source: Gartner (April 2018)

Figure 2 Gartner Magic Quadrant for Enterprise High-Productivity Application Platform-as-

a-Service. Used without permission.

Government Use
Modern low-code can literally be used in all application areas except for deeply

embedded systems and very high-performance computing, though even in those two

areas, low-code can provide much of an app while interfacing to software

components written in other programming languages.

Given this breadth, literally all IT application areas of the Canadian Government are

candidates for low-code. For example:

Apps consisting of a business process, including interfaces to
document/content management, emails for reminders, etc.

Data gathering and database apps that interface to large scale and
distributed data storage – including managing identity and privacy.
Communication and task management apps that allow for chats, emails,

video conferencing, and calendar management.
Data-science and visualization apps that potentially contain some machine

learning or artificial intelligence to process and present large amounts of data.

Low Code Application Development

9

Analyst group IDG and OutSystems have specifically explored OutSystems for digital

government, basing their evaluation on the goals shown in Figure 3, though the

conclusions are valid for all low-code systems. In particular, low-code can

simultaneously increase quality while decreasing service delivery costs.

Figure 3 Top Goals with Respect to the Digital Experience Provided for Citizens. Used without permission
from: Improving Digital Experience for End Users in the Public Sector, IDG Research Services, December

2018.

It is worth noting that achieving these goals (likely via low-code) fits into the higher

levels of Gartner's Digital Government Maturity Model (such as Level 4 and Level 5).

Technology Trends
Low Code Application Development

	Low Code Application Development
	Table of Contents
	Business Brief
	Technical Brief
	Industry Use
	2 A broad solution is one able to interface to many other types of components (both legacy or written in other programming languages), runs on several platforms, is able to produce apps of all types.

	Government Use
	Low Code Application Development

